The Thomas Fowler story
In 1996 I discovered a passing reference to Thomas Fowler in a local history which fired my interest. It soon became apparent that no research had been done into this fascinating life. It was to become a very interesting journey rediscovering Thomas Fowler ... and his talented family, a branch of which now lives in the lake-district.
Having done much of the initial research, sadly, pressures of work meant I did not have the time to pursue things any further and I passed the baton to Pamela Vass who then did a great deal more research. Since then much has been written about Thomas Fowler, you only need to google his name to find numerous references. He was an unsung genious, but thankfully his contribution is now widely recognised.
In 1828 Thomas Fowler patented the first convective heating system. This was the precursor to the modern central heating system. In 1840 he invented a calculating machine, built in wood, that was much admired by his contemporaries Augustus De Morgan, Charles Babbage, George Airy and many others. The machine used a ternary calculating model.
In 1777 Thomas Fowler was born to Hugh and Elizabeth of Gt.Torrington in North Devon, UK. The Fowler family were poor, Hugh was a cooper, and Thomas received only a rudimentary education. He was apprenticed to a fell-monger (seller of skins) at the age of 13. Despite this unpromising start in life Thomas was arguably one of the great thinkers of his age, yet his life has gone uncelebrated for the last 150 years.
His son, the Rev Hugh Fowler writes:
"...after a hard day's work among sheepskins he would spend half the night poring over his mathematics, until he had gone as far as to master Saunderson's Fluxions, the name of which the method of the differential calculus, as far as it was then known, was designated. There was no one alas! to take him by the hand, and help him to carry on his studies at Cambridge, where alone such talent as he undoubtedly possessed could either have been fully developed or adequately rewarded, so he was left, without help or sympathy, to his solitary studies."
The Thermosiphon
In 1828 he patented the Thermosiphon (British Patent no 5711). This was to become the modern central heating system. A heating system based on a design by Thomas Fowler was installed at Bicton, then part of the Rolle Estate and received great acclaim in the Gardener's Magazine of 1829.
Operation of the themosiphon as described in the patent:
Parts of the Themosiphon apparatus:
- A and B are vessels containing water.
- The tube I-J is the thermosiphon. It can be compared with a conventional siphon.
- The end of the thermosiphon, which is in vessel A is bent upwards to prevent bubbles entering the system.
- F and F are stop-cocks
- G is for filling the apparatus.
- D is pipe connecting vessels A and B.
To prepare the apparatus for action:
- Close E.
- Close F and F and open G.
- Fill the thermosiphon through the funnel at G.
- Close G and open F and F.
- Repeat from 2 until all the air is out of the thermosiphon.
To start the thermosiphon:
- Make sure G is closed and F and F are open.
- Open E
- Apply heat to A.
It is reported at the time:
"Mr Fowler has had the good fortune to hit on the idea that water may be heated and made to circulate through a siphon, as well as through horizontal pipes, or by force through pipes in any direction; provided always, that the height of the siphon be not greater than to be counter-balanced by the pressure of the atmosphere; say not greater than 30 feet. Any person might have discovered the same thing by reflection, or in answer to the question asked; but we are not aware that the idea has occurred, either to the original inventor of the hot-water system, Bonnemain; to its introducers into England, Bolton and Watt; to its subsequent introducer; Chabbanes; to Count Romford; and to its reinventors, or English inventors, Atkinson and Bacon; or to any to any of the numerous engineers now occupied in applying this mode of heating."
The system is also described in a pamphlet written by Fowler which he dedicates to John Sloley Esq. of Great Torrington who used the system in his vinery.
The patent laws of the time were flawed. By introducing any small change to the original design, the resulting new version would not be covered by the original patent. This meant that others could steal his invention with impunity, which of course they duly did. His son writes in 1875:
"Unfortunately the invention was soon pirated in all directions. The only remedy was costly legal proceedings, but even if he had had the means to conduct them, success would have been doubtful."
Fowler became very embittered by this experience and this had an unfortunate side-effect on the history of computer science.
(It is worth noting that the Romans had a convective heating system called the Hypocaust. However, there are fundamental differences. Firstly, heat was convey by hot air and secondly, it was not a closed system. The hot air, having past through channels under the floor, then was allowed to escape into the atmosphere.)
The Calculator
During the 1830's Thomas Fowler rose to become the sole manager and partner of the only bank in the town, Messrs Loveband & Co. He also became treasurer of the Torrington Poor Law Union. The tedious nature of the calculation of payments for each of the parishes, which was one of his responsibilities, led him to attempt to automate the calculations by the use of tables. Fowler's solution was typically brilliant and led, in 1838, to Fowler's "Tables for Facilitating Arithmetical Calculations".
The tables used a method based on Fowler's realisation that "any number might be produced by a combination of the powers of 2 or 3". The first section of the booklet is the Binary Table, or a table of indices of the number 2 from 1 to 130048. The second section is the Ternary Table, or a table of the indices of the power of the number 3 from 1 to 3985607.
Soon after he had devised the tables he used the same ideas to build a mechanical calculating machine. This was exhibited before members of the Royal Society in May 1840. In a subsequent letter to George Bidell Airy Fowler writes:
"This Machine was constructed entirely with my own hands (principally in Wood) with the utmost regard to economy and merely to put my Ideas of this mode of calculation into some form of Action; It is about 6 feet long , One foot deep and three feet wide., In Brass & Iron it might be constructed so as not to occupy a space much large than a good portable writing desk and with powers such as I have described."
The image above is taken from a glass panel in the local church, commissioned by his son.
The then Astronomer Royal, Professor George Airy was to promote Fowler's invention to a gathering of the British Society for the Advancement of Science in August 1840. In the minutes of that meeting we read:
"Mr Airy gave an account of Mr Fowlers new Calculating Machine. The origin of the machine was to facilitate the guardians of a poor-law district in Devonshire in the calculating of the proportions in which the several divisions were to be assessed. The chief peculiarity of the machine was, that instead of our common decimal notation of numbers, in it ternary notation was used; the digits becoming not tenfold but threefold more valuable as they were placed to the left; thus, 1 and 2 expressed one and two as in common, but 10 expressed not ten but 3, 11 four, 12 five; but again 2 can be expressed by three, one taken from it. Now, let T (one with a bar over it), written thus with a small bar above it, mean that it is subtractive; then 12 and 2T are the same in effect, both meaning five; and for a similar reason, by replacing 2 with 1T, we have five written in there several ways; 12, or 2T, or 1TT. The last is the form used it is obvious by an assemblage or unit digits thus positively or negatively written, any number may be expressed. In the machine levers were contrived to bring forward the digits T or 1 as they were required in the process of calculation."
Fowler writes to Airy:
"I had the honor in May 1840 to submit the machine to the inspection of many Learned Men in London among whom were the Marquis of Northampton, Mr Babbage, W F Baily and A de Morgan Esq with many other Noblemen and Gentlemen, Fellows of the Royal Society etc and it would have been a great satisfaction to me if I could have had the advantage of your opinion also. They all spoke favourably of my invention but my greatest wish was to have had a thorough investigation of the whole principle of the machine and its details, as far as I could explain them, in a way very different from a popular exhibition:- this investigation I hope it will still have by some first rate men of science before it is be laid aside or adopted.
I am fully aware of tendency to overrate one's own inventions and to attach undue importance to subjects that preoccupy the mind but I venture to say and hope to be fully appreciated by a Gentleman of your scientific achievements, that I am often astonished at the beautiful aspect of a calculation entirely mechanical.
I often reflect that had the Ternary instead of the binary Notation been adopted in the Infancy of Society, machines something like the present would long ere this have been common, as the transition from mental to mechanical calculation would have been so very obvious and simple.
I am very sorry I cannot furnish you with any drawings of the Machine, but I hope I shall be able to exhibit it before the British Association at Devonport in August next, where I venture to hope and believe I may again be favoured with your invaluable assistance to bring it into notice. I have led a very retired life in this town without the advantages of any hints or assistance from any one and I should be lost amidst the crowd of learned and distinguished persons assembled at the meeting without some kind friend to take me by the hand and protect me."
Charles Babbage, Augustus De Morgan, George Airy and many other leading mathematicians of the day witnessed his machine in operation. These names have become beacons in the history of science yet nowhere will you find reference to Thomas Fowler. Airy asked that he produce plans of his machine but Fowler, recalling his experience with the Thermosiphon, refused to publish his design.
The machine was superior in many respects to Babbage's calculating machine, the Difference Engine, generally regarded as the first digital computer. Fowler's machine anticipated the modern computer in its design by using a ternary calculating method. This is in contrast to Babbage's machine which performed a decimal calculation, an approach which made his machine very complicated. The government of the day became increasingly disillusioned by the money they were having to pour into its development. So much so that the government refused to even look at Fowler's machine. Had Thomas Fowler published his design he would no doubt have won the support of many leading mathematicians of the time. Unfortunately, it took several decades before his approach was re-invented and in the mean time his name had slipped into obscurity.
In Doron Swade's paper on Charles Babbage he talks of how, in 1971, Maurice Wilkes, published an article 'Babbage as a Computer Pioneer'. This was the first authoritative evaluation of Babbage's contribution in modern times. In it he accuses Babbage of not of pioneering the modern computer age but of delaying it. He argues that Babbage became associated with failure and that this discouraged others from advancing the cause of automatic computation. ( Maurice Wilkes was a distinguished pioneer of modern electronic computers, who led the post-war team at Cambridge that built the first practical electronic computer, the EDSAC.)
The Rev. Hugh Fowler writes:
"The government of the day refused even to look at my father's machine on the express ground that they had spent such large sums, with no satisfactory result, on Babbage's 'Calculating Engine', as he termed it"
Thomas spent his whole life in Torrington. He married Mary Copp in 1813. They had at least eleven children but, as was common at this time, several died before reaching adulthood; the average life-expectancy was only 40 in the 1830's. The genius of Thomas Fowler is evident in some of his children, particularly his daughter Caroline, who was composing, books i.e. taking the print and placing it back to front and upside down in a composing stick ready for printing, by the age of eight.
A Brief Chronology
- 1777 Thomas Fowler born. Son of a cooper. Little education. Self taught with the only book 'Ward's Mathematician's Guide' - John Ward's Young Mathematician's Guide, 1st Edition 1707, 12th Edition 1771 (Shelf No: 1509/1167)
- 1790 Apprenticed at the age of 13 to a fellmonger (a fell = an animal hide)
- 1800(~) Became a Printer and Bookseller
- 1813 Married Mary Copp in St. Michael's on 21 February
- 1822 Published 'Field Sports as followed by the Natives of India' by Daniel Johnson, Surgeon H.E.I.C.S (Shelf No: 1040F8), 1827 second edition.
- 1828 Patented the Thermosiphon
- 1829 Installed a heating system at Bicton for the Rt. Hon. Lord Rolle Mr Coldridge, ironmonger, directed the works.
- 1835(~) Treasurer of the Poor Law Union
- 1835(~) Became partner in the bank Messrs. Loveband & Co. (formerly Cooke & Co until 1821) 1836 Joint Stock Banking Act allowing banks to print bank notes if less than six partners.
- 1838 Published ÎTables for Arithmetical Calculations' (Shelf No: 712F48 in British Library-only copy!)
- 1840 Calculating Machine first constructed
- 1842 Calculating Machine improved
- 1843 Thomas Fowler died on March 31 of 'Dropsy of the Chest'.
- 1843 Messrs. Loveband & Co was merged with the National Provincial Bank.
- 1864(~) Stained Glass window in south transept of St. Michael's Church, Torrington in his memory. Commissioned by his son Hugh, probably during the restoration of the church.
- 1875 Read biography written by his son Rev Hugh Fowler to Devonshire Association August, North Devon Journal published the biography.
Historical Context
The Napoleonic Wars had come to a conclusion in 1815. The release from this yoke precipitated calls for social change. It is a time of great ferment in which many social changes are taking place. Much of this is catalysed by a new feeling of intellectual freedom which expresses itself in an explosion of scientific and engineering advances that themselves change the face of society.
Science had only recently become a profession, William Whewell coined the term 'scientist' in 1833.
Other Computing Machines
- 1623 Whilhelm Schickard Calculating Clock.(6 digit machine)
- 1644 Blaise Pascal Pascaline (5-digit machine)
- 1668 Sir Samuel Morland Money adder
- 1674 Gottfried von Leibniz Stepped Reckoner
- 1775 Earl Stanhope multiplying calculator (like Leibniz's.)
- 1770 Mathieus Hahn multiplying calculator.
- 1786 J. H. Mueller Difference engine (conceived idea)
- 1820 Thomas de Colmar Arithmometer I
- 1822 Charles Babbage Difference Engine
- 1832 Charles Babbage Prototype built
- 1834 Charles Babbage Analytical Engine
- 1840 Thomas Fowler Calculating Machine
- 1842 Scheutz 3rd-order difference engine
- 1849 Charles Babbage better & simpler difference engine
- 1853 Scheutz Tabulating Machine
- 1878 Ramon Verea an internal multiplication table
- 1885 Frank S Baldwin Arithmometer II
- 1886 Dorr E. Felt Comptometer
- 1892 William S. Burroughs more robust Comptometer